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Abstract. We consider the possible mechanical instability of an ultracold Fermi gas due to the attractive
interactions between fermions of different species. We investigate how the instability, predicted by a mean
field calculation, is modified when the gas is trapped in a harmonic potential and quantum effects are
included.

PACS. 03.75.Ss Degenerate Fermi gases – 03.75.Kk Dynamic properties of condensates; collective and
hydrodynamic excitations, superfluid flow

1 Introduction

The field of ultracold Fermi gases has recently seen a very
strong development. After reaching the degenerate regime,
experiments have dealt with mixtures of two hyperfine lev-
els [1–3]. This has been done mostly in the vicinity of a
Feshbach resonance, which allows quite conveniently to
adjust the effective interaction. Indeed by changing the
magnetic field, one can start with a small negative scatter-
ing length, make it more negative, let it have a jump from
−∞ to +∞ at the resonance, and then have it decrease
to small positive values. A major purpose of these exper-
iments is to look for the BCS transition, which should
occur in particular for negative scattering length a. Natu-
rally one expects the critical temperature to be higher for
larger |a|, since this corresponds to a stronger attractive
interaction.

On the other hand one may expect that this overall
attractive interaction may give rise also to a collapse in-
stability. This would be similar to the one very much stud-
ied in Bose-Einstein condensates [4], where this instabil-
ity prohibits the formation of condensates with a large
number of atoms. It is reasonable to think that similarly
the BCS instability would be in competition with a col-
lapse. The first work where the BCS transition for ultra-
cold atoms was explicitly considered [5] studied also this
collapse within the mean field approximation, consider-
ing in particular the dependence on the ratio between the
number of atoms in the two atomic population expected
to form Cooper pairs. The vicinity of this collapse would
also be particularly favorable [6] to the BCS transition.
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More specifically let us consider only the case of two
equal populations of atoms corresponding to two different
hyperfine levels, and restrict ourselves to the T = 0 case.
A scattering length a corresponds to an effective interac-
tion constant g = 4π�

2a/m between unlike atoms, giving
rise to a mean field contribution gn/2 to the chemical
potential µ(n) where n is the total atomic density. Includ-
ing kinetic energy the total chemical potential is given
in this approximation by µ(n) = �

2k2
F /2m− |g|n/2 with

3π2n = k3
F . The instability is obtained from ∂µ/∂n = 0

which gives for the critical density λ ≡ 2kF |a|/π = 1.
Quite remarkably recent experiments [1–3,7] on mix-

tures of fermionic atoms with two different hyperfine
states have not observed this instability when they have
been through the Feshbach resonance, where the scatter-
ing length becomes infinitely large. Since these experi-
ments have reached quite low temperatures it is very un-
likely that they missed this transition because they did
not go at low enough T . On one hand the absence of this
instability is quite fortunate since it allows experiments to
reach all the possible range of scattering lengths, without
any limitation. In particular this gives the possibility to
produce molecules, which has been extremely fruitful very
recently. Nevertheless the failure of the mean field calcu-
lation [5] is somewhat striking since, although there is no
reason to believe mean field to be quantitatively correct,
it gives quite often reasonable qualitative estimates. Note
however that there is nothing basically wrong in the idea
that a collapse instability should exist since it has been in-
deed observed experimentally [8] in a fermion-boson mix-
ture with an effective attraction between fermions and
bosons.

In this paper we investigate a possible source for this
disagreement between this simple mean field estimate [9]
and experiments. An indication in this direction can be
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found in the results of an investigation of the hydrody-
namic modes in harmonic trap [10]. The hydrodynamic
framework implies that the quantum length scale does not
appear in the study, except indirectly in the equation of
state of the dense gas. The surprising result is that no
mode with zero frequency is actually found, even when
the system reaches the density for collapse at the center
of the trap. All the modes are found to have non zero
frequencies, whereas one would expect the collapse insta-
bility to manifest itself by the appearance of a mode with
zero frequency, as it is found for a Bose condensate. In-
deed one can show, from the starting equations, that it
is a general feature of these hydrodynamic modes to have
non-zero frequencies [11]. This result may suggest that, in
a trap, the collapse may be missed in some way.

In order to explore this problem and go beyond the
macroscopic scale by including quantum effects, we per-
form in this paper a semiclassical microscopic calculation
to find if there is a zero frequency mode. Since experiments
have already reached very low temperatures, and that this
is the most favorable situation for appearance of the in-
stability, we restrict our exploration to the T = 0 case. We
find indeed that there is one. The lack of zero frequency
mode in the hydrodynamic framework has actually a sim-
ple physical explanation. The gas becomes unstable when
the density at the center of the trap reaches the critical
density. However the gas in all the other parts of the trap
has a density lower than this critical density. So the over-
all system is, so to speak, not soft enough to a have a zero
frequency mode. When one goes to a microscopic calcu-
lation, the unstable region, which had at the macroscopic
scale a zero extension, gets a finite extension of order of
the microscopic scale. In this way this region can produce
a strong enough softening and give rise to a zero frequency
mode, which we obtain below explicitly.

In the next section we begin our investigation by mak-
ing a simple RPA approximation to find the microscopic
effect of interactions. Our treatment takes into account the
modification of the density distribution due to the interac-
tions. This allows us to find out explicitly the important
features in this problem, and in particular to point out
the relevant length scales. We can then generalize our ap-
proach by getting rid of the RPA approximation, and show
how to deal with the problem on the quite general grounds
of Fermi liquid theory. We find indeed that the threshold
for instability is modified by the trap and obtain explicitly
this modification, as well as the shape of the mode respon-
sible for the instability. However, although this modifica-
tion could be sizeable for the very anisotropic traps used
in some experiments, it appears unlikely that it is respon-
sible for the overall disappearance of the instability, as it
is observed experimentally.

2 Theoretical treatment of the instability
in a trap

We consider now the above atomic gas of fermions with
massm, in an isotropic harmonic trap of frequency Ω, giv-
ing rise to the harmonic potential V (x) = 1

2mΩ
2r2 with

r2 = x2. An (undamped) eigenmode corresponds to an
infinite response of the system excited at the frequency
of the mode. Since we are interested in a zero frequency
mode [12], we have to consider in addition a static pertur-
bation δV (x), which will induce a static density fluctua-
tion δρ(x). The collapse instability will correspond to a
divergent density fluctuation. The linear response theory
gives [13]:

δρ(x) =
∫

dx′Π(x,x′)δV (x′) (1)

where Π(x,x′) = − i
�

∫
dt θ(t)〈[ρ̂(x, t), ρ̂(x′, 0)]〉 is the

zero frequency density-density (retarded) response func-
tion. Therefore an instability corresponds to a divergent
eigenvalue of the kernel operator Π(x,x′), which is real
symmetric. For interacting particles, one has to make use
of some kind of approximation to calculate Π . The sim-
plest one, which will reduce as we will see to the mean
field result for an infinitely wide trap (in which case the
system would be homogeneous) is the Random Phase Ap-
proximation (RPA) and this is the one we will use here.
As it is well known, it is equivalent to sum up an infi-
nite series of bubble diagrams. Since the fermions we deal
with interact with a very short range atomic size poten-
tial, we can use a contact potential U(x) = gδ(x), with
g = 4π�

2a/m, for the interaction potential, where g < 0
since we consider an attractive interaction. In this case
the RPA for our trapped fermions reads:

Π(x,x′) = Π0(x,x′) + g

∫
dx1Π

0(x,x1)Π(x1,x′). (2)

This equation (2) reads formally Π = Π0 + g Π0Π , and
its formal solution isΠ = (1−gΠ0)−1Π0. This shows that
the eigenvectors of Π and Π0 are the same, and that the
instability we look for appears when the smallest (nega-
tive) eigenvalue of Π0 equals 1/g. The general eigenvalue
equation for Π0 (eigenvalue α, eigenvector ϕ) reads:

∫
dx′Π0(x,x′)ϕ(x′) = αϕ(x). (3)

It is then convenient to introduce the Wigner transform
Π0

W (q,R) =
∫
dr e−iq.rΠ0(R + r/2,R − r/2). Equa-

tion (3) then becomes:
∫

drdq
(2π)3

eiq.rΠ0
W (q,x − r/2)ϕ(x − r) = αϕ(x). (4)

Then we use the fact that there is a large number of
trapped particles or equivalently that the chemical poten-
tial is much larger than the level spacing �Ω. This allows
to make use of a semiclassical treatment by considering
that the trapping potential is slowly varying. In this case
we can use for Π0

W (q,R) its homogeneous value, evalu-
ated with the local value of the particle density. We there-
fore make the approximation Π0

W (q,R) ≈ Π0(q), where
Π0(q) is the response function of the homogeneous sys-
tem with a Fermi wave vector kF (R). The local Fermi



X. Leyronas and R. Combescot: Instability of a trapped ultracold Fermi gas with attractive interactions 495

wave vector is related to the equilibrium density of the
cloud n(R) = k3

F /3π
2, determined by the equation:

µ(n) + 1/2mΩ2 r2 = µ̃ (5)

where µ(n) is the chemical potential and µ̃ is the overall
chemical potential.

Our next step is to take advantage of the length scale d
we expect physically for the instability mode we are inter-
ested in. Clearly the instability will occur at the center
of the trap since this is where the local particle density
is highest. On the other hand this mode is a collective
phenomenon involving a large number of particles, so it
must occur over a typical scale large compared to the
interparticle distance, which is itself of order k−1

F . This
leads us to look for a mode which satisfies k−1

F � d� R0.
This relation implies that the typical wavevectors entering
the Fourier expansion of ϕ(x) are small compared to kF .
From equation (4) it is then seen that the wavevector q
in Π0

W (q,R) must also be small compared to kF . This al-
lows us to expand Π0 in powers of q. Since Π0(q) is just
the free particle response function, we have [13] explicitly
Π0(q) ≈ − 1

2π2mkF (1 − 1
12q

2/k2
F ). When we insert this

expression in equation (4) and perform the integrals, we
find the following second order partial differential equa-
tion for the density fluctuation ϕ corresponding to the
instability mode:

∆ϕ+ kF∇
(

1
kF

)
.∇ϕ+

1
4
kFϕ∆

(
1
kF

)

+ 12
(
k2

F + 2π2 kF

m
α

)
ϕ = 0. (6)

If we consider now the order of magnitude of the three first
terms of equation (6), we notice that the second and the
third term contain derivatives of kF , while the first one
contains only derivatives of ϕ. Since the length scale R0

for the variations of kF is much larger than the length
scale d for the variations of ϕ, the second and third terms
are negligible compared to the first one.

In order to solve explicitly equation (6) we consider as
a first step, in the following subsection, the simple case
where the modification of the density distribution due to
the interactions is not taken into account. This will al-
low us to see clearly the relevant length scales. This sim-
ple case is equivalent to assume the free particle relation
µ(n) = �

2 k2
F /2m for the equation of state. We will then

take consistently into account interactions in kF (R) in the
next subsection.

2.1 Simple case

In this simple case we have merely [14]:

kF (R) = k0
F (1 −R2/R2

0)
1/2 (7)

where the Thomas-Fermi cloud radius R0 and the
maximum Fermi wave vector k0

F are related by [14]

�
2 (k0

F )2/2m = (1/2)mΩ2R2
0. Both are directly related

to the particle number N in the trap. Coming back to
equation (6), since again d � R0, kF (x) is a slowly vary-
ing function in the considered domain of x ≡ ‖x‖ ∼ d. We
can therefore expand kF (x) up to second order around
x = 0, using equation (7). Setting the eigenvalue α = 1/g
at the instability, we can introduce the coupling constant
λ = − 1

2π2mk
0
F g = − 2

πk
0
Fa, and we find:

∆ϕ+ 12
[ (
k0

F

)2
(1 − 1/λ)

− (
k0

F /R0

)2
(1 − 1/2λ)x2

]
ϕ = 0. (8)

Going up to fourth order in the expansion of kF (x) would
give a term of order (k0

F )2/(R0)4 x4, which is smaller than
the x2 term in equation (8) by a factor (x/R0)2 � 1. It is
therefore justified to stop the small x expansion to second
order to get equation (8) from equation (6).

Now equation (8) is the Schrödinger equation for the
3D harmonic oscillator of frequency ω for a state of en-
ergy E, provided we set � = m = 1, together with:

E = 6
(
k0

F

)2
(

1 − 1
λ

)
(9)

and

ω2 = 12
(
k0

F /R0

)2
(

1 − 1
2λ

)
. (10)

Since the instability mode we are looking for is naturally
localized in the center of the trap, we are looking for
the bound states of this harmonic oscillator. The criti-
cal value of the coupling constant λ is directly obtained
from the energy E of the oscillator by equation (9). Since
the first instability will occur for the smallest value of
the coupling constant, we are looking from this equa-
tion for the smallest possible value of the energy. We
check that we recover properly the homogeneous case by
taking the limit R0 → ∞. Indeed in this case the har-
monic oscillator frequency ω goes to zero, which implies
that all the bound states energies go to zero. From equa-
tion (9) this gives λ = 1 as expected. Coming back to
the trapped case we will find the lower energy among
the isotropic s−wave states. We have for these states the
quantization relation E = ω(2n + 3/2), with n = 0, 1, ...
For a given n, this determines λ at the instability. The
smallest value of λ is obtained for n = 0, correspond-
ing to the Gaussian mode ϕ(x) = e−

1
2ω x2

. This yields
1 − 1/λ =

√
3/4(1 − 1/2λ)(R0k

0
F )−1 � 1. This result

shows that we have λ � 1. Therefore to first order in
1/R0k

0
F we have at the instability:

λ− 1 ≈
√

3
8

1
R0k0

F

· (11)

Naturally we have to check the consistency of our calcu-
lation by looking at the size d of the instability mode.
Since we have λ � 1, we can just set λ = 1 in the
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equation (10) for ω2. We get ω =
√

6k0
F /R0 leading to

a Gaussian mode ϕ(x) = exp(− 1
2x

2/d2) of width d ≡
ω−1/2 = 6−1/4(R0/k

0
F )1/2 = 6−1/4

√
�/mΩ. Except for

the numerical coefficient this is the size of the single par-
ticle ground state in the harmonic trapping potential. This
result for the width of the mode is completely consistent
with our starting hypotheses k−1

F � d� R0.

2.2 Self-consistent calculation

Now, since we have the quantitative situation under con-
trol, we come back to a consistent description of the den-
sity distribution in the atomic cloud, taking interactions
into account in the calculation of the Fermi wave vector.
Taking for the chemical potential the Hartree approxima-
tion, we have µ(n) = �

2k2
F /2m−|g|n/2 with n = k3

F /3π
2.

When λ = 1, the static compressibility (n∂µ/∂n)−1 di-
verges at the center of the trap. As a result when we take
the derivative of the chemical potential with respect to the
Fermi wavevector, we find that it is zero. This implies that
kF (R) is a linear function of R close to the trap center,
instead of being quadratic as in equation (7). As we have
seen in the preceding subsection, we need to know kF (R)
only close to the center. This is easily done and one finds:

kF (R)
k0

F

≈ 1 − 1√
3
R

R0
, (12)

where R0 is again the Thomas-Fermi radius of the atomic
cloud. But it is now related to the Fermi wavevector at the
center k0

F by �k0
F =

√
3mΩR0, instead of �k0

F = mΩR0 as
above. Following the same procedure as before, we insert
this expression for the density into equation (6). Keeping
only the dominant terms, we get:

∆ϕ+ 12
(
k0

F

)2
(

1 − 1
λ
− 1√

3
x

R0

)
ϕ = 0. (13)

For s-wave solutions this equation can be reduced to Airy
function differential equation:

ψ′′(y) = (y − y0)ψ(y) (14)

provided that we rescale the position x according to
x = Dy, with the new length scale D given by D/R0 =
(4
√

3(k0
F R0)2))−1/3, and we introduce the new function

ψ = xϕ. We find y0 = 12(k0
F D)2 (1 − 1/λ). We note that

the power law dependence ofD/R0 on k0
FR0 is slightly dif-

ferent from the one we have found for d/R0. Nevertheless
our starting hypotheses k−1

F � d � R0 are still satisfied.
The boundary conditions ψ(0) = 0 and ψ(+∞) = 0 im-
pose that ψ(y) = Ai(y − y0) where y0 ≈ 2.3 is the first
zero of the Airy function. We finally get for the coupling
constant at which the instability arises:

λ− 1 ≈ y0
(6k0

F R0)2/3
· (15)

This result is similar to the one we have found above equa-
tion (11) for our simple case. However the dependence on

k0
FR0 is somewhat weaker since the exponent is 2/3 in-

stead of 1.
Our result equation (15) is coherent with what might

be expected physically. Indeed this can not be the density
right at the center of the trap which is relevant for the
instability. One has rather to consider the average density
over a region of typical size a few k−1

F . This average den-
sity is lower than the nominal density right at the center.
We expect therefore that the threshold for the instability
is raised, compared to what one could obtain by consid-
ering only the density at the center. This is just what we
obtain. Nevertheless the shift of the instability is rather
small since it is of order 1/(R0k

0
F )2/3. On the other hand

this is coherent with the fact in the limit R0 → ∞ we
have to recover the homogeneous case with no shift at
all. Hence the result has to depend on the ratio between
the microscopic length k−1

F and the macroscopic one R0,
which is small. Therefore we come to the conclusion that
the effect of the trapping potential is unlikely to be re-
sponsible for the lack of collapse found in experiments.
On the other hand it is not completely clear that the very
elongated shape of the traps used in most of this kind of
experiments would not play some role. Indeed in this case
the above ratio would not be that small. Nevertheless we
have not explored this more complex situation. However
in at least the ENS experiment [15] the trap is not so
far from isotropic, so strong anisotropy does not hold for
explaining the lack of collapse.

2.3 General case

Finally we generalize our treatment by getting rid of our
approximate evaluation of the static response function of
the system. Indeed we used above the simple RPA to ob-
tain it. However our above derivation makes it clear that,
because of our semiclassical approximation, all what we
need is the response function of the homogeneous system.
Hence we can use the general framework of Fermi liquid
theory to discuss it. Let us recall that this framework is an
exact one, and that it applies to our case of interest, that
is a strongly interacting neutral Fermi system [16], just
as it does for normal and superfluid liquid 3He. Naturally
there is a counterpart to the fact that this framework is
exact, which is that it does not provide the explicit val-
ues of the constants it introduces. However this is not so
important here since our approximate treatment provides
us already with order of magnitude for these constants.
On the other hand it is quite important to know that the
only things which are not exact in our treatment are the
values of these constants.

We found above from the RPA that the response func-
tion Π for the interacting system could be obtained from
the response function Π0 of the non interacting system by
Π−1 = (Π0)−1 − g. Now in Fermi liquid theory [16], for
zero wavevector, the exact value of Π is given by:

−Π−1 =
1
N0

+
F s

0

N0
(16)
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whereN0 = m∗kF /π
2, is the density of states, withm∗ the

effective mass, and F s
0 the � = 0 symmetric Landau pa-

rameter. We see that we have merely to replace the bare
mass by the effective mass, and replace g by F s

0 /N0 to
obtain the exact result (note that we have a factor 2 dif-
ference with our above explicit expression for the density
of states because we consider the two spin populations). In
particular the collapse instability corresponds to the well-
known condition F s

0 = −1. Hence we only need to know
the exact dependence of N0 and F s

0 as a function of parti-
cle density in order to recast our above calculation under
an exact form. More precisely we need only to know this
dependence in the vicinity of the collapse density. Finally
in order to write the generalization of equation (13) we
need not only our response function for zero wavevector,
but also the lowest correction due to the fact that we work
at nonzero wavevector q. For dimensional reasons this cor-
rection will be in (q/kF )2 but the coefficient will not be
given by the free gas result, as we have done above. More
generally this coefficient is beyond the reach of standard
Landau’s Fermi liquid theory. This leads us to write finally
the small q expansion:

−Π−1 =
1
N0

(
1 + b

q2

k2
F

)
+
F s

0

N0
(17)

where we had b = 1/12 in the free particle case. Hence the
framework we used in our calculation is exact, only the
constants which come in have to be modified. We do not
rewrite here the generalization of our above calculations
since it is straightforward to do it and the results are not
expected to lead to qualitative changes with respect to our
above ones.

3 Conclusion

In this work, we have considered the zero frequency
unstable density fluctuations for ultracold fermions in
a harmonic trap. More precisely we have studied how
quantum effects modify the corresponding mode. We have
used a semiclassical treatment justified by the fact that
the trap is large compared to the microscopic quantum
scale. In a first step we have treated the interactions
within the RPA approximation. We have then made a
fully general analysis within Fermi liquid theory. Our
results show that there is a zero frequency mode, with a
size large compared to the inverse Fermi wave vector at
the center of the trap but small compared to the cloud
size. The threshold for instability is modified by the
trap. However, even though we find a modification in the
threshold instability, this does not seem to explain the
absence of instability, as it is observed experimentally.
It is interesting to note that, by contrast, quantum
effects have a strong influence on the corresponding
instability for Bose systems. This is basically because
in this case the correspondent of our dimensionless
parameter R0k

0
F becomes of order unity. It would be of

interest to devise a model allowing to go continuously

from the Fermi case to the Bose case, and see the impor-
tance of quantum effects grow along the way.
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